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Abstract

The dynamics of an ensemble of linear disturbances in boundary-layer flows at various Reynolds

numbers is studied through an analysis of the transport equations for the mean disturbance

kinetic energy and energy dissipation rate. Effects of adverse and favorable pressure-gradients

on the disturbance dynamics are also included in the analysis. Unlike the fully turbulent regime

where nonlinear phase scrambling of the fluctuations affects the flow field even in proximity to

the wall, the early stage transition regime fluctuations studied here are influenced across the

boundary layer by the solid boundary. In addition, the dominating dynamics in the disturbance

kinetic energy equation is governed by the energy production, pressure-transport and viscous

diffusion - also in contrast to the fully turbulent regime. For the disturbance dissipation rate, a

dynamic balance exists between the destruction and diffusion of dissipation.



1 Introduction

A current challenge in the prediction of wall-bounded turbulent flow fields within the realm

of single-point closures is the inability to consistently predict the (upstream) flow field natural

transition region. While some transition-sensitized turbulence models, applicable to naturally

transitioning flows, exist in the literature, j1, 2, 3] their development has been based more on

empirical grounds rather than on first principles. As such, their range of applicability is confined

to flows containing tide same dynamic features as the "calibration flows" the models were de-

signed for. In contrast, transition-sensitized turbulence models, applicable to flows with by-pass

transition, have been extensively studied and refined over the last decade (e.g. see Steelant and

Dick[4] and Savill[5]).

Motivated by the success of such models in flows with by-pass transition, a methodology

is pursued here that can lead to the development of models applicable to generic flows in a

natural, low-disturbance environment. These models have immediate use in the prediction of

many flow fields including complex aerodynamic flows such as flows over high-lift devices. While

transition dynamics and transition models have been and continue to be studied and developed,

their applicability is confined to the understanding and prediction of transition. On the other

hand RANS-type closure models, for example, are used to predict entire flow fields. From

these predictions, lift and drag characteristics of aerodynamic vehicles are obtained for use in

design and flow control. Even in simple flows over flat surfaces, current RANS-type turbulence

models without modification, can and often do yield results that show "turbulent profiles" in

the immediate vicinity of the leading edge even though transition to turbulence occurs nmch

further downstream.

In order to develop a general linkage between the transitioning laminar flow and the turbulent

flow in a developing boundary layer, it is necessary to have a common mathematical framework

frond which the disturbances in both regimes can be described. Previous studies,[6, 7] have devel-

oped such a framework by coupling a deterministic description of the evolution of disturbances

in the laminar regime with an analysis of an ensemble of such disturbances. The approach is

based on the observation that, even in the laminar regime, every flow is subject to an inevitable

uncertainty in initial conditions. Therefore, although each individual disturbance evolves deter-

ministically, a probability distribution must be introduced for the calculation of ensemble mean

properties of the various disturbance statistical moments.

For the boundary-free homogeneous decaying disturbances[6] and for the homogeneous shear[7]

cases studied previously, an arbitrary disturbance mode was characterized by three independent

wave numbers, so that the probability distribution P was necessarily a flmction of (k:, k2, k3).

The isotropy of the initial disturbance field implied that P was a function of k 2. A Gaus-

sian distribution was chosen by appealing to the central limit theorem: i.e., the ensemble of

disturbances contained an infinite number of statistically independent modes. The modes are

statistically independent because there are no nonlinear interactions among them, and according

to the central limit theorem, the probability density flmction of a large number of statistically

independent entities approaches a Gaussian as the number of entities goes to infinity.



This approachis similar to rapid distortiontheory (RDT) in that it is basedon linearized
disturbanceequations;howeverthe developmentis different in detail. Ill RDT, the energy
spectrumtensorandcorrespondingtransportequationsthat aredevelopedcanincludetheeffects
of viscosityandhavereliedon thehomogeneityof the disturbancefield. Here,the probability
distribution associatedwith eachinitial disturbancemodeis givenandfrom that a statistical
databaseof sucha distribution of disturbancesis de.veloped.In the previousstudies,j6,7] the
disturbancedynamicsfocusedon homogeneousflows (shear-freeflow[6],shearflow[7])in order
to developthe methodologyand to forma linkagewith correspondingturbulent boundary-free
flows.Nevertheless,the processcanbeextendedto inhomogeneousflowsaswell, at leastover
somespatialrangewherethe amplitudesof the disturbancesremainsmallrelativeto the mean
flow.

The mathematicalmethodologydevelopedpreviouslyis nowextendedto a spatiallydevel-
opingboundarylayerwith zero,adverseand favorablepressuregradients.This study focuses
on the earlieststagesof transition in a low disturbanceenvironmentwherethe disturbance
amplitudesaresmallenoughthat nonlinearinteractionscanbeneglected.In this regimethe
disturbancefield typically involvesa widespectrumof Tollmien-Schlichting(TS) modesand
streamwisevortices.The streamwisevorticesmakeno contributionto the productionof dis-
turbancekinetic energyand for smallamplitudedisturbancesthey eventuallydecay,[8]while
the stableTS modesrapidly decayalso,leavinga superpositionof leaststablemodes.J9]The
(mean)boundary-layerflow is extractedfrom the Falkner-Skanfamily of solutions,and the
disturbancefield consistsof linearsuperpositionsof three-dimensionaldisturbancemodesthat
aresolutionsof the linearizedNavier-Stokesequations.Weassumetheexistenceof sucha field
without enquiringasto its origin. Eachdisturbancemodeischaracterizedby a frequency,span-
wisewavenumber,anda streamwiseand spanwisepositionof origin. For eachfrequencyand
spanwisewavenumber,thestreamwisewavenumberfor themostunstablemodeat theparticular
Reynoldsnumberisselected.With theReynoldsnumber,frequency,spanwisewavenumber,and
streamwisewavenumberfixed,themodal"shape"isdeterminedbythesolutionsoftheequations
for the velocityandpressurefields.

The disturbancefield consistsof modesthat couldoriginateanywhereover the boundary.
Sincethe disturbanceshavenopreferredlocationof origin, the distribution in frequencyand
spanwisewavenumberspaceofthedisturbancefieldisassumedto behomogeneousin thestream-
wiseandandspanwisedirections.A probability distribution that is uniformin frequencyand
Gaussianin spanwisewavenumberspacecharacterizessucha randomdisturbancefield. The
frequencyrangeis sufficientlybroadto encompassthe mostunstabledisturbancemodes,and
thewavenumberrangeissufficientlybroadthat the ensemblecontainsspatially localizedthree-
dimensionaldisturbances.Whilethechoiceof ensembleis homogeneous,thedisturbancemodes
streamwisewavenumberand "shape" retain a dependenceon streamwiselocation. This im-
pliesthat the disturbancecorrelationsbuilt from the choiceof (homogeneous)ensembleand
(inhomogeneous)disturbancemodesare alsodependenton streamwiselocation. In orderto
enforcethehomogeneityconditionthat thesameensembleof disturbancesis generatedat each
streamwiselocation,the probabilitydistribution alsocontainsa delta flmction in streamwise
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position. This probabilitydistribution is usedto computesingle-pointsecondmomentsthat
characterizetile disturbancefieldaswellasits kineticenergyanddissipationratebudgets.It is
worth notingthat othermorecomplex(inhomogeneous)disturbances,suchasthosegenerated
by three-dimensionalmeanflowsandcross-flowvortices,couldbeconsideredwithin thiscurrent
framework.Evenin this morecomplexcase,anensembleof suchdisturbanceswouldbeformed
with anassociatedprobabilitydistribution in the samemannerasdetailedherefor tile linear
disturbancemodes.However,in this initial study,the simplertwo-dimensionalmeanflowwith
pressuregradienteffectswill sufficein developingthis newformulation.

As noted above,current RANS-typeclosureInodelshavedifficulty in representingpre-
transition flow fieldsand transition location,particularly with nonzeropressuregradientsor
for threedimensionalmeanflows. Although threedimensionalmeanflowsarenot considered
here, the effectsof zero, favorable,and adversepressuregradientson the kinetic energyand
dissipationratebudgetsareconsidered.Theinformationobtainedfrom thesebalanceequations
is neededin orderto guidethe formulationof a unifiedmodel.

2 Wall-Bounded Disturbance Fields

A fiat solid-walled boundary located in the (x*l,x_) plane at x_ = 0 is considered (* variables

are dimensional quantities). The incompressible flow analysis focuses downstream away from

any leading edge effects. Linear disturbance fields are generated which are deviations from

an ensemble-mean boundary-layer velocity field given by the Falkner-Skan family of solutions,

U(Re, _3,x2), applicable to flow fields with zero, adverse and favorable pressure gradients. Stan-

dard boundary-layer scaling is used so that Ugo is the velocity scale, L* = [(2 - fl) _*z*_/U_] 1/2 is

the length scale, and Re (= UgcL*#,*) is the Reynolds number. The effects of pressure gradient

are introduced through the parameter/3:/3 = 0, zero pressure gradient;/3 < 0, adverse pressure

gradient; _ > 0, favorable pressure gradient.

The three-dimensional, laminar disturbance modes under consideration are bounded ,solu-

tions of the linearized Navier-Stokes equations. These velocity and pressure disturbance modes

can be written as

[ ui(x2, k3,w, Re) ]ei(f:_ok_dx'_+k3(z3-za°)-_t) (z2, k3,co,Re) (1)

where (kl (Re, co, ka), 0,/c3) is the wave vector in coordinate directions (xl, x2, xa) associated with

the most unstable mode, (kl complex and k3 real), co is the (real) frequency, and (xl0, z30) is

the position where the disturbance mode originates. Note that the disturbance mode shapes

ui and :5 depend on streamwise position through their Reynolds number dependence. Since ka

is independent of position, the phase e -ikaxa° can be absorbed into _i and/5. In the analysis

that follows, it will also be convenient to analyze the results in terms of the displacement

thickness Reynolds number Reo (= U_cO*/t_*) where the displacement thickness is given by

o* = L* U(1 - U)d 2.



with

These modes are the solutions of the continuity and momentum equations given by

d_2

ikl_t+_+ik3fi3 = 0 (2)

+ + = -ik + (3)
d/) 1

(-iw + iktU) fi2 - dx2 + -_e [£fi2] (4)

1 (5)
(-iw + ikl U) g3 = -ik315 + -_e

d 2 d 2 IC2
£ - dx_ (k_ + k_) - dx'_ (6)

where U(Re, x2) is the mean (streamwise) velocity. As seen from Eqs. 2 - 5, it is assumed

throughout that gi, /5, and kl are only weakly dependent on xl so that their derivatives with

respect to xl can be neglected. These equations are combined to obtain, first the Orr-Sommerfeld

equation for the wall normal velocity component g2 with complex eigenvalue kl

and second, the Squire equation for the normal component of vorticity,

_2 = ika_zl -- ikl _z3. (8)

(du)
dx---_2+ - _ =

Equations (7) and (9) are solved subject to the boundary conditions _2 = (dft2/dx2) = O.

_2 = 0 at x2 = 0, and _;2 --+ 0, _2 --+ 0 as y -+ oc. Equation (7) is solved using the compound

matrix algorithm employing a fourth order Runge-Kutta integration combined with an iteration

on the eigenvalue. Once the eigenvalue, kl, and eigenfunction, _2, are found, Eq. (9) can be

solved for _2. This equation is quite stiff so it is solved by an implicit method; the second

derivative is approximated by a fourth order stencil and the resulting penta-diagonal system is

solved by a generalized Thomas algorithm. With/t2 and _2 known, Eqs. (2) and (8) are solved

simultaneously for _ and _3. Finally, with the velocity fi known, the pressure is found from

(3).

The velocity and pressure disturbance fields can be constructed from these disturbance mode

solutions by considering an ensemble of linear superpositions of modes with initial mode ampli-

tudes (I)(a_, k3,xl0) so that

ui(x,t) = f dw dkadx_o _(w, ka, xto)_ti(x_,w, k3, Re)e i(f;_° k_dz'_+ kaz_ - wt) (10)

[ d_ dk3dxlo _(w, ka, xlo)p(x2,w, ka,Re)e i(f£_°k'dx'_+ k_xa - _,t) (11)p(x, t)
J
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This ensembleis describedby a probabilitydistribution for the amplitudessothat their mean.
(_5(co,k3, Zl0)} is zero, and covariance is homogeneous (a'l and za-directions) and stationary,,

(_*(_,]_3,3_10)¢_(co', ]_, XlO))= _5(CO -- CO')a(/g 3 -k_3)a(xto-Z'lo)P(co, ka,zlO). (12)

Assuming that co,/Ca, and zt0 are independent random variables, the probability density P(co, ]ca.x0)

is partitioned as

P(co, k3, xlo) = P_o(co)Pka(k3)P.,.to(Xlo) (13)

Tile distribution in co cannot be Gaussian because co does not take negative values. Negative

co's, which correspond to upstream propagating modes, are all heavily damped. If a Gaussian

distribution in co was taken with positive mean, this would introduce a preferred frequency. The

probability density Pz(co) is therefore assumed to be that of band limited white noise having a

fiat spectrum and a corresponding probability distribution,

{ 1 COL< co< COB (14)P ,(co) = cog - col
0 otherwise

where COLand cog are chosen to encompass the region of disturbance growth computed from linear

stability theory. As discussed in the Introduction, for each frequency and spanwise wavenumber,

the streamwise wavenumber for the most unstable mode at the particular Reynolds number is

selected. Figure 1 shows the growth rate contours obtained from the linear stability analysis

for the zero pressure gradient case as a function of co and Reo for different values of ka. The

frequency range used must be large enough to encompass both growing and decaying modes

over the corresponding k3 and Reynolds number ranges. In the calculations, co was chosen to

lie in the range 0.04 to 0.08 with the step in co between these linfits being 0.001. For the zero

pressure gradient case, it can be seen fl'om Figure 1 that, for the range of k3 values shown in the

figure, the lower frequency modes will be damped at the smaller values of Reo and the higher

frequency modes will be damped at the larger values of Reo. The results reported here are

relatively insensitive to the range of vahms of co provided that it is not too narrow.

For Pka(k3), the central limit theorem argues in favor of a Gaussian and such a Gaussian

distribution should have a large variance in order to encompass a sufficient wavenumber range of

energetic oblique modes. The disturbances should be localized in the spanwise direction so this

is a further argument for a relatively large variance. Therefore the probability density Pka(/ca)

assumes a Gaussian form

1 { k_'] (1,5)
Pkz(k3)-- _exp \ 20.:2,]

with variance _r2, corresponding to a mean spanwise, spatial extent of the disturbances given

by G-1. The results were found not to vary when a sufficiently large variance in k3 was used.

For example, results were essentially unchanged for values of v > 0.1 that corresponded to a

spanwise, spatial extent of the disturbances of 60* and less. For this study, the k3 values ranged

from -0.3 to 0.3 with a step size of 0.001. This range was sufficiently broad so that the values

of Pka(k3) at the ends of the range were small.



As discussedat the outset,it is not possibleto uniquely identify a positionof origin for
the disturbancefield. Thus, a homogeneousensembleof disturbancesis consideredand its
dynamicbehaviorat variousstreamwiselocationsis examined. Sincethe meanvelocity in
the boundarylayeris inhomogeneousin the streamwisedirection,the probability distribution
must alsodependon tile streamwisepositionof the origin of the disturbancexl0. Thus. a

probability density function Pzto is needed that generates tile same ensemble of disturbances at

each streamwise location Xl. Such a distribution is given by

Pzlo(Xl0) = 5(Xl --:rl0) (16)

This wall-bounded disturbance field contrasts with tile homogeneous fields[6, 7] studied pre-

viously. In this c_e an ensemble of superpositions of most mlstable modes is considered rather

than an ensemble of superpositions of all modes that was considered in the homogeneous case.

For a given (w, k3), there is a unique kl corresponding to the most unstable mode, so the prob-

ability distribution depends on w and k 3 but not kl.

In further contrast to the homogeneous cases considered previously,[6, 7] where the evolution

of the disturbance correlations was studied, in this inhomogeneous case the same ensemble is

created at each xl and the instantaneous dynamical behavior of the disturbance correlations is

studied. If the boundary-layer disturbance field were allowed to evolve, the differential growth

or decay rates of the modes would lead to a rapid loss of streamwise homogeneity introducing

an arbitrary element into the analysis. It is, therefore, more useful to consider an instantaneous

snapshot of the dynamics.

Based on experimental results with the zero pressure gradient flat plate boundary layer,j10]

transition would begin between Rez _ 5 x 105 to 6 x 105 and end between Rez _ 3 x 10G

and 107. In terms of Reo, the beginning of transition would occur between 470 and 515 while

the end would occur between 1150 and 2100. The calculations in this study cover tile range

150 _< Reo <_ 2000 which should encompass the transition range.

3 Disturbance Velocity Correlations and Dissipation Rate

It is now possible to form the second-moment correlations from the disturbance velocity and

pressure fields given in Eqs. (10) and (11). For example, the disturbance stress tensor is given

by

1 <u_uj +uiu;)

with the disturbance kinetic energy, K = rill2, and the disturbance isotropic dissipation rate is

given by

1 0uj () j

C(Xl'a72) -- Re C_z k 037k



1/- Re dka P (oo)Pk3(ka)

x Ik,I + + d.2

Note that, although streamwise homogeneity in the choice of ensemble has been maintained, all

disturbance correlations retain a dependence on xt through either a direct Reynolds number

dependence (as in the disturbance dissipation rate) or through the implicit Reynolds number

dependence of ui and kt. From these quantities, it is now possible to construct a detailed

mapping of the ensemble-averaged disturbance field.

The necessarily low-Reynolds numbers of interest here suggest that the various disturbance

correlations be analyzed in terms of wall units. The friction velocity u__ needed in the scaling

is determined from x/7-_-, where the wall shear stress r_ is simply proportional to dU*/dx.* 2 at

x_ = 0 with U*(x2) obtained from the solution of the Falkner-Skan equation with pressure

gradient parameter fl,

,= (Ur'_ 2 ( Z_L. ) (dU) (So) (19)= a77 2 = "

The corresponding scaled wall normal coordinate x + is then,

X2+ \ ,* / \L*] \ t,* / RTe = (SoRe)l/2x2, (20)

where both So and _Re are functions of _. (All the variables to be presented in the figures to

follow are scaled and shown in wall units.) In order to compare results at different values of Ree,

the kinetic energT of the disturbance field at each Ree is normalized to unity. This normalization

determines the overall scaling of all other quantities.

Before examining the disturbance energy and dissipation rate budgets, the different compo-

nents of the disturbance stress tensor are discussed. Disturbance ensembles at two different -Reo

values are chosen. The first is Ree = 393, which corresponds to a region just downstream of

the neutral position; here the disturbances contain both components that grow and decay but

DK/Dt is negative. The second value is Reo = 1040, which characterizes a region where almost

all disturbance components are growing and DK/Dt is positive.

Figure 2 shows the behavior of the disturbance normal stress components across the boundary

layer. The _-11and 7-33 components both reach peak values near x + _ 25. At -Reo = 1040, Figure

2b, the distributions of all three components are broader in x + than at Reo = 393, Figure

2a. The peak value of both 711 and r2_. are also both slightly greater at -Reo = 1040 than at

_Reo = 393 but the peak value of ra3 is slightly less. An interesting contrast to the fully turbulent

case, even at these low-Reynolds numbers,Ill] is the behavior of the r22 and "raa components.

Unlike the turbulent case where r22 > "I-33in the inner part of the layer, the behavior here is

just the opposite with r33 > r22. The streamwise rll component still dominates these other two



componentsovertile innerpart of tile boundarylayer.TheT.22componentcontinuesto increase
awayfromthewallandeventuallydecaysat a slowerratethaneitherthe rll or _3 components.

and becomes the dominant component in the outer part of the boundary layer.

The shear stress distribution at four values of Reo, 149, 393, 627 and 1040, is shown in Figure

3. The production of kinetic energy is proportional to -7-12 so that a negative _-12 means that

the the transfer of energy is from the mean flow to the disturbance field while a positive _'12

means that the transfer of energy is from the disturbance field to the mean flow. The location

at which Reo = 149 is upstream of the neutral location, all components of the disturbance

field are decaying at this position and the shear stress is positive across the entire boundary

layer. At Re0 = 393 the shear stress is negative in the near wall region and positive in the

outer region of the boundary layer, being predominantly positive. A further increase in Reo to

647 results in an increase in the size of the region where "r12 is negative; here the disturbance

field is a mixture of growing and decaying modes and DK/Dt ,_ 0 throughout the boundary

layer. At Reo = 1040 the shear stress is negative across the entire boundary layer and DK/Dt

is positive. This change in the distribution of 7-12 with increasing Reo mirrors the change from

a region where all of the disturbance components are decaying to one in which ahnost all of

them are growing. The distribution of Tl_o with z._;- at Reo = 1040 is typical of the larger

Reynolds numbers. Calculations were performed up to values of Reo -_ 2000. Over the range

1000 < Reo <_ 2000, the peak negative value of _-1_ and its x + location changed by much less

than 1%. Increasing Reo from 1000 to 2000 only results in a very slow widening of the long 'tail"

in the outer portion of the boundary layer; at Reo ,_ 1800 it extends to x + _ 150 in contrast to

x + _ 110 at Reo = 1040. The low Reynolds immber results cannot be used for RANS modeling

but were included in order to illustrate the effects of varying the Reynolds number. As these

results show, the shear stress varies with Reynolds number up to Reo ,_ 1000 and is relatively

insensitive to further increase in Reo.

With the Falkner-Skan family of solutions it is straightforward to introduce the effect of

pressure gradient into the analysis through the variation of the parameter/3. Calculations have

been performed for three values of/3: 0.00, -0.15, and 0.15. As discussed previously, the first

of these, ¢/= 0.00, yields the zero pressure gradient Blasius inean flow profile. With f3 = -0.15,

the boundary layer faces a moderately strong adverse pressure gradient (the separating Falkner-

Skan flow occurs for _ = -0.198840); the mean flow wall shear stress is approximately 46%

of that of the zero pressure gradient boundary layer. Finally, ¢/= 0.15 produces a moderately

strong favorable pressure gradient with the mean flow wall shear stress about 40% greater than

that of the zero pressure gradient boundary layer. Thus, the three values of/_ span a reasonable

range of mean flows.

Figure 4 shows the effect of imposing an adverse (_ < 0) or favorable (/3 > 0) pressure

gradient at Reo -_ 1040; Figure 4a is a plot of K versus x2 Figure 4b is a plot of K versus x +.

In the three cases shown, the total disturbance energy within the boundary layer is normalized

to unity. The adverse pressure gradient thickens the boundary layer which is reflected in the

broadening of the kinetic energy distribution relative to the zero pressure gradient (/3 = 0) case.

A local minimum in the distribution now exists at x.+ _ 30 and this corresponds to the inflection
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point in thethe meanvelocityprofilecausedby theadversegradient.In contrast,tile favorable
pressuregradientcausesa thimfingof tile boundarylaverwhichis reflectedin the movenmntof
tile peakof thekineticenergy'distributioncloserto the solidboundaryat x + _ 20.

The effect of pressure gradient on disturbance dissipation rate is shown in Figure 5. Unlike

the kinetic energy, the dissipation rate is essentially unaffected by tile change in pressure gradient.

The dissipation rate peaks at the boundary and is confined to a very narrow region near the

solid boundary with tile maximum value at the boundary only slightly affected by tile change

in/_.

In the fully turbulent case, it is not uncommon to ext)loit energetic equilibrium (producion

equals dissipation) conditions that exist across tile boundary layer. For example, in tile log-layer

region, the production-to-destruction equilibrium can be used as a rationale for a Boussinesq

eddy viscosity relation between the turbulent shear stress and mean velocity gradient. While

such a production-to-destruction balance is unlikely to occur in this linear disturbance region,

it is nevertheless of interest to see if a similar eddy viscosity relation can be established here.

Figure 6 shows tile behavior of -r12/(dU/dz +) across the boundary layer as a function of

pressure gradient. For the zero pressure gradient case, this disturbance mode viscosity increases

with distance from the wall and peaks near x + = 25 - consistent with tile distributions of the

other disturbance quantities. In an adverse pressure gradient, the disturbance mode viscosity

level increases with the peak moving farther away from the solid boundary. Nevertheless, in

both cases the distributions near the wall (x + _< 10) nearly coincide. The favorable pressure

gradient case is not shown here since DK/Dt < 0 and the shear stress (production) is positive

(negative) (cf. Figure 7).

The ensemble of disturbances described in the previous section nmst also satisfy a dynamic

balance derivable front the linear Navier-Stokes equations. The dynanfics of the disturbance

field can be better understood through an analysis of the balance equations derivable for the

disturbance kinetic energy and dissipation rate.

3.1 Disturbance energy budget

The derivation of the transport equations for the disturbance kinetic energy, K = rii/2, follows

directly from the linearized Navier-Stokes equations coupled with an average over an ensemble

of disturbances described by the distribution P(oa, ka,xt0). The resulting transport equation

can be written as
DK

- p-e + II + Z_ (21)
Dt

where

dU (22)
7_ = -rl2dx2
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1 cg_K

Re OxjOxj

are, respectively, the disturbance energy production, pressure-transport of disturbance energy,

and viscous diffusion of disturbance energy. The disturbance energy dissipation rate is c given

in Eq. (18). Note that in the subsequent figures, DK/Dt is not a streamwise difference but is

computed as an instantaneous quantity according to an expression analogous to Eqs. (17) and

(18).

Using this disturbance energy equation, it is instructive to examine the behavior of the

disturbance ensemble at different streamwise locations. At low Re0 (not shown) where there

are no growing modes in the ensemble, the disturbance kinetic energy decays (DK/Dt < O)

because production, the contribution from dissipation and viscous diffusion are all negative.

Only pressure-transport contributes positively to the energetic balance over most of the layer.

Very near the wall, the dynamic balance is between the kinetic energy dissipation rate and

viscous diffusion, which is analogous to the fully turbulent case very near the wall.

Figure 7 shows the energy budget across the boundary layer at the two different values of

Re0. At each value of Re0, the distributions of energy production, dissipation rate, pressure-

transport, and viscous diffusion are shown. Figure 7a shows the energy balance at Re0 = 393;

a region of the flow where some unstable modes are included in the ensemble. At this value of

Re0, there exists regions of the boundary layer where, for example, production is positive and

pressure-transport is negative although overall DK/Dt < 0. Very near the wall the balance is

predominantly between viscous diffusion and disturbance dissipation rate. Figure 7b shows the

energy balance at Re0 = 1040. At larger values of/_e0, the qualitative features of the energetic

balance remain unchanged with only the tails of each distribution decaying more slowly with x +

reflecting the downstream boundary-layer growth. At this and larger values of Re0, the kinetic

energy is growing with DK/Dt > 0 across the boundary layer. Again, the near wall balance is

between viscous diffusion and disturbance dissipation rate. It is apparent from Figure 7b that,

outside of the very near-wall region, the production and pressure transport have opposite sign

and are nearly proportional to one another although viscous diffusion also contributes to the

balance. It is possible to show (see Appendix) that this proportionality between the pressure-

transport and energy production can be established through an analysis of the Poisson equation

for the pressure fluctuations.

The effect of imposed pressure gradient on the disturbance kinetic energy budget is shown in

Figure 8 at Re0 _ 1040. In the adverse pressure gradient case (/3 < 0), Figure 8a, the dynamic

balance between the terms in the transport equation remain unchanged; however, there is a

broadening of the distribution across the layer and an overall increase in the amplitude levels

associated with each term except the disturbance dissipation rate. Note that the scale in Figure

8a is five times that in Figure 7b and Figure 8b. For the favorable pressure gradient case shown

in Figure 7b, the dynamic balance is significantly altered qualitatively from the zero pressure

gradient case. The dynamic balance is more consistent with the Re0 = 393 zero pressure gradient

case shown in Figure 7a. At this streamwise station, the ensemble of disturbances included both

stable and unstable modes, but the overall balance showed a decay of disturbance kinetic energy
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across the boundary layer.

These results confirm that even though the individual disturbance modes satisfy the linear

Navier-Stokes equations, an ensemble of such disturbances can display a complex range of ener-

getic dynamics which characterize the early stage transition regime of a developing flow. In the

next section, the dynamic balance of the disturbance dissipation rate is examined.

3.2 Disturbance dissipation rate budget

The transport equation for tile disturbance dissipation rate _ is also directly derivable from the

linearized momentum equations. The resulting form is given by

D__E= p_ + 7__ + 7,3-T + HE + V_ (25)
Dt

Pe

where

1 dU <Ou*i Ou2 0ul Ou_) (26)Re dx2 Oxj OXj + OXj OXj

1 dU /Ou; Ouj Ouj Ou;\
Re dx2 \ Oxl Ox,2 + -Oxl Ox2 / (27)

p3 _ 1 d2U ( Oul 0u'1) (28)

T D

Re 2 \ OxkOx_ OxkOz_ /

1 0 /Ou_ Op Out Op*\ (30)
Re Oxj \ Oxk Oxk + Oxk Oxk /

1 02e

_s = Re -_XiOX i (31)

are, respectively, mixed production, production by mean velocity gradient, gradient production,

destruction, pressure-transport, and viscous diffusion. (The notation used here is consistent

with the notation used by Rodi and Mansour.[13]) Analogous to the treatment of the DK/Dt

term, De/Dt is not a streamwise difference but is computed as an instantaneous quantity.

Figure 9 shows the balance of terms across the boundary layer for the disturbance dissipation

rate budget. With the exception of the destruction and viscous diffusion of dissipation, which

essentially balance out across the entire boundary layer, all terms are negligible. This behavior

suggests that in the absence of a production mechanism associated with vortex stretching, a

nonlinear effect, direct dissipation of disturbance energy is confined to regions in close proximity

to the wall. In contrast with the disturbance energy balances, the same (qualitative) dynamic

balance is achieved for the two values of Reo shown and was also found for all values of Reo
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at whichthesecalculationswerecarriedout (Reo <_2000)The only changethat wasfound
wasthe broadeningof the distributionacrossthe layer with increasingReo. While energetic

equilibrium (DK/Dt = 0) only occurred at a single value of Reo, Figure 9 shows that De/Dr

is very small and _ 0 compared to the dominant terms, destruction and viscous diffusion of

dissipation, throughout the entire range of Reo values studied, hi fact, it was found that De/Dt

was always at least three orders of magnitude smaller than the dominant terms.

The effect of pressure gradient on the disturbance dissipation rate balance is shown in Figure

10. Unlike the disturbance energy balances shown in Figures 7 and 8, tile dissipation rate

dynamics is insensitive to the imposition of pressure gradient oil the flow. This once again

shows that the disturbance dissipation rate is not a (significant) contributor to tile disturbance

dynamics in the early stage transition regime.
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4 Conclusions

The dynamics of an ensemble of disturbances in boundary-layer flow with and without pressure

gradient has been studied. The individual disturbance modes are solutions of the linearized

Navier-Stokes equations and the probability density, flmction associated with the ensemble ac-

counts for distributions in spanwise wavenumber, frequency and initial spatial position. Such an

ensemble represents the early stages of a transition disturbance field which ultimately leads to

a fully turbulent field. The representation used here has been shown in previous homogeneous

studies[6, 7] to form a unified mathematical framework between the two fields.

An analysis of the dynamic balance in the disturbance kinetic energy and dissipation rate

equations has shown behavior which contrasts with tile flflly turbulent case at both low Reynolds

numbers and in near-wall regions. This new insight is critical in properly representing the dv-

namics in the linear disturbance region. While no self-sinfilar behavior is reached, the qualitative

features of the dynamic balance become independent of Reo and show that energy production,

pressure-transport, and viscous diffusion dominate across the boundary layer with a small con-

tribution from dissipation rate. The dissipation rate only plays a role in very close proximity to

the solid boundary where it balances the energy diffusion.

The dynamics of the disturbance dissipation rate transport are straightforward. In the

absence of nonlinear interactions, there is essentially no production mechanism present so that

all the dissipation rate originates at the solid boundary. The disturbance field dissipation rate is

unaltered in the region (D_/Dt = 0) because a dynamic balance between the dominant terms.

destruction and diffusion, is achieved across the boundary layer.

The results obtained here provide new insight into the dynamic balance of an ensemble

of disturbances in the early stages of a (naturally) transitioning boundary-layer flow in a low

disturbance environment. Since current RANS-type closure models are not capable of predicting

transition region location without modification, the information here Call be used to develop

improved transport equations for the ensemble of disturbances and subsequently coupled to

corresponding transport equations valid in the fully turbulent regime..
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Relationship Between Disturbance Energy Production and Pres-

sure Transport

From the results presented in Sec. 3.1 and Figure 9. it was shown that a close relationship exists

between the production of disturbance energy and pressure-transport of disturbance energy. In

this appendix, tile relationship will be derived and tile proportionality coefficient between the

two terms estimated.

From Eqs. (17) and (22), the production of disturbance energy can be written as

1 (U,lU2 + ulu_) dU (32)
P = - -2 dx2

and the pressure-transport//is defined by Eq. (23).

In the linear regime, the pressure Poisson equation is given by

Ouj OUi _ 20u2 dg (33)
V2P = -2-_zi Oxj OXl dx2'

with solution

,, Ou2 dU)_x,1dx_ _ [ OP(X') p(x') OG(x - x') ]On'On' (34)p(x) = -2 fj d3x'V(x- × dS a(x - x') •

where G is the Green's function. The surface term in Eq. (34) does not contribute to H since

ui = 0 on the no-slip boundary and at infinity.

In the development of turbulent closure models for higher-order correlations involving the

fluctuating pressure,[12] it is assumed that all second derivatives of the mean velocity are small

relative to the mean velocity gradient. This same assumption is invoked here so that Eq. (34)

can be approximated by

2dU fd3x, a(x ,,0u2 _ 2dU 0G(x-x'p(x) - _ - x )_i dx. f d3x' 0_1 )_'(_') (35)

With this expression, the pressure-transport term can be written as

0 OG(x - x') 0

For j 7_ 1, 02G(x - x')/Oxjc3xl is odd in x_ while u2 is a slowly varying function of x_. This

implies that the integrals in (36) vanish. For j = 1, Eq. (36) can be written as

.,x,
)1Ox'_ u'2(x') ' (37)

16



The free-spaceGreen'sfunction- (4reIx - x'l) -t is usedsothat

0 2

CgXjOXj

--a(x - x') = aa(x - ×'), (38)

and from symmetry this yields

02 aa(x - x')
OZa(xi - x') = 3

(39)

This allows Eq. (37) to be written as

1 dU x')_2(xt)) (x) (f d3x ' _3(x-x')u_(x')))/-/(x) _ 3dx2 <u*l(x) (f dax'_Sa(x- nt-71,1

1 dU 2p
- 3 &.2 <_(_)_2(_) + _(_)_(x)> = -3

(40)

From the results shown in Figure 7d, for example, the integrated ratio across the boundary layer

between the production and pressure-transport of disturbance energy is _ -1 which is in close

agreement with the result obtained in Eq. (40). The difference can be easily attributed to the

assumption of neglecting the second derivative of the mean velocity in Eq. (35). For example, in

the zero pressure gradient case at x + = 25 with Reo = 1040, the second derivative of the mean

velocity is about one-quarter of the first derivative (in magnitude). Further out in the boundary

layer, the second derivative becomes somewhat larger than the first derivative (in magnitude).
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Figure 1: Zero pressure gradient growth-rate contours
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